University of Connecticut

Events Calendar

Mathematics Colloquium
Counting Self-Avoiding Walks On A Lattice, From Combinatorics To Physics
Hugo Duminil-Copin (IHES)

Thursday, September 17, 2020
3:30pm – 4:30pm

Storrs Campus
On-line

A self-avoiding walk (SAW) on a graph is a path which does not visit any vertex twice. In this talk, we study an enumeration problem consisting in counting such walks of given lengths. More precisely, we will present the proof (obtained jointly with S. Smirnov) of a conjecture of Nienhuis stating that the number of SAWs of length $n$ on the hexagonal lattice grows like $\sqrt{2+\sqrt 2}^{n+o(n)}$. The proof will also shed new light on a very instructive and beautiful phase transition in the geometric properties of long SAWs.

Contact:

Kyu-Hwan Lee

Mathematics Colloquium (primary), College of Liberal Arts and Sciences, UConn Master Calendar

Control Panel